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Abstract. The article deals with the application of the resampling procedure 

using multivariate lambda distribution within the process of optimization of 

portfolio selection models. The aim of the resampling procedure is to achieve 

portfolios that provide better quality results on out-of-sample data compared to 

the traditional optimization-based approach using estimates from historical data. 

In this paper, we deal with the application of the resampling procedure on daily 

data of 30 assets within the model of portfolio selection in the space of expected 

return and CVaR (Conditional Value at Risk). We are dealing with the 

application of two approaches, an approach based on the assumption of normal 

distribution of data using multivariate normal distribution for data generation and 

a procedure using data generation from multivariate generalized lambda 

distribution. 
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1 Introduction 

In the past, the application of the resampling procedure was dealt with by several 

authors, most of whom dealt with the application within the Markowitz model using 

monthly or weekly data [2], [5]. Only a small number of contributions dealt with the 

application on other models of portfolio selection or on applications in the case of using 

daily data. The aim of this paper is to apply the resampling procedure within the model 

of portfolio selection in the space of expected return and CVaR using daily data. The 

paper also deals with the application of two modifications of this procedure, namely the 

procedure using multivariate normal distribution and the procedure using multivariate 

generalized lambda distribution (GLD). The Gld distribution was selected based on 

previous research [8]. In the paper we use the modification of the CVaR model to the 

task of linear programming, originally presented in [10]. Within the computational 
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experiments we use FKML parameterization of the GLD distribution, a detailed 

overview of the issues concerning the GLD distribution as well as the formulation of 

the quantile function can be found, for example, in [1]. 

2 Resampling procedure 

The procedure is generally based on the use of multivariate distribution on data 

generation and the Monte Carlo method, with a selected portfolio selection optimization 

model applied to each data simulation. The result of these procedure is a set of efficient 

frontiers quantified from individual random realizations of data, while the resulting 

frontier is obtained by averaging the weights of individual statistically equivalent 

portfolios. 

Generating data from a multivariate normal distribution is a fairly well-known 

procedure that is currently programmed in most statistical software. In our paper, we 

use the rmvnorm() function contained in the Mvtnorm package in R [3]. In the case of 

generating data from a multivariate generalized lambda distribution, it is a bit more 

complicated. In the paper, we use the procedure of generating data from a multivariate 

non-normal distribution given in [4]. The application of this procedure requires that the 

distributions of the individual components of the random variable 𝑋 must be known in 

the form of quantile functions and the correlation is available as a correlation matrix 

 𝑅𝑋 using rank-based correlation (e.g. Spearman's correlation coefficient). 

Subsequently, the procedure consists of the following steps [4]: 

 

1. Transform matrix 𝑅𝑥 to matrix 𝐶𝑧 applying statement:  

𝐶𝑍 = 2 sin [
𝜋

6
 𝑅𝑋] 

2. Generate data samples of m – dimensional normal distribution with correlation 

matrix 𝐶𝑧  
3. Transform normal components into the components of uniform distribution by 

applying the distribution function (CDF) of the normalized normal distribution 

𝑈𝑖 = 𝛷(𝑍𝑖) such that 𝑈𝑖~𝑈(0,1) 
4. Quantify values of 𝑋𝑖 using a given quantile function of individual 

components, 𝑋𝑖 = 𝑄𝑋𝑖(𝑈𝑖) 

 

The advantage of such procedure is considerable flexibility in the choice of the assumed 

distribution to the point that the quantile function must be known for the selected 

distribution. 

Procedure of resampling within portfolio selection models was introduced by [7] 

and used in contributions like [9], [12]. We can classify it into the category of heuristics 

to solve the problem of portfolio selection [11]. Such a procedure reduces the problem 

of error maximization, for a more detailed description of this problem we recommend 

the paper [6]. The resulting portfolios of this procedure are more diversified compared 

to the traditional approach. The resampling procedure consists of the following steps: 
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• Estimate the parameters of the assumed probability distribution from historical 

data and estimate the covariance matrix. 

• Than generate a vector of random realizations from a multivariate marginal 

probability distribution, using an estimated covariance matrix. The length of 

the generated interval is traditionally the same as the number of observations 

of historical data that we used in the previous step. 

• The generated sample of data will then be used as input data for the portfolio 

selection model for estimating the efficient frontier. Save the values of weights 

for M evenly distributed portfolios at the efficient frontier by rank (from 

portfolio with minimal risk to portfolio with maximal return). 

• Repeat the previous 2 steps many times, then average the weights of portfolios 

that share the same rank within the individual simulations. 

3 Experiment results 

Calculation of experiment are perform using daily data of closing positions of 30 assets, 

from 01.01.2012 to 31.12.2020. The assets consisted of DJIA components. We 

quantified daily returns as so-called logarithmic returns, i.e. the first difference of the 

natural logarithm of individual observations for individual assets. We use series of daily 

returns to estimating the parameters of the normal distribution and the parameters of 

the generalized lambda distribution, which we will use subsequently in the resampling 

procedure.  

 

Fig. 16. Distribution of weights within selected portfolios at the efficient frontier quantified using 

the CVaR model and using of a "classical" approach. 
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To estimate the parameters of the distribution, we used the maximum likelihood 

estimation method, where when estimating the parameters, we consider a data sample 

for a period of two years, from 01.01.2012 to 31.12.2013. In Monte Carlo simulations, 

we performed 500 simulations, and in portfolio optimization using a CVaR risk model, 

we generated 100 evenly distributed portfolios at the efficient frontier. 

In a computational experiment, we compare portfolios quantified using a "classical" 

approach using estimates from historical data compared to two resampling procedures, 

where in one case we are generating data from a multivariate normal distribution 

(Norm_mult) and in the other case we are generating data from a multivariate 

generalized lambda distribution (Gld_mult). We compare the performance of portfolios 

on a out-of-sample data, so without the data which we used to estimate the parameters 

of individual models. Specifically, it is a data sample from 01.01.2014 to 31.12.2020. 

As part of the experiment, we consider the scenario of an investor who invests in 

individual assets in accordance with selected constructed portfolios. There are three 

investment scenarios, a one-year investment horizon, a three-year investment horizon 

and a six-year investment horizon. An investor cannot sell the assets in which he has 

invested for the duration of the investment horizon. Investor can sell the assets only 

during the year following the investment horizon, but for a maximum period of one 

year. Specifically, in years 2015, 2017, 2020. In the experiment, we abstract from stock 

exchange fees and additional costs associated with the sale and purchase of assets.  

 

Fig. 2. Distribution of weights within selected portfolios at the efficient frontier quantified using 

the CVaR model and resampling procedure using GLD distribution as a model of daily returns. 

We consider four representative portfolios from each model; for comparison, we have 

selected four portfolios from each model that share the same expected return to 

investors. To compare the performance of individual representative portfolios, we 
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quantify average statistics for a period of one year after the investment horizon, namely 

average return, mean absolute deviation (MAD) and the modified Sharpe ratio from 

performance measures, where we consider the mean absolute deviation as a measure of 

risk. Such a statistic is also referred to as the mean absolute deviation ratio. We chose 

the absolute deviation as a measure of risk (even in the case of the performance 

measure), as in comparison with the more traditionally used standard deviation and the 

Sharpe ratio, we are not limited by the assumption of a normal distribution of returns. 

Figure 1 and Figure 2 are composite bar graphs where one bar is composed of smaller 

parts (different shades of gray) which represent the size of the weights of the individual 

assets in the portfolio. The horizontal axis captures the rank of the individual portfolios, 

where the first portfolio is the minimum risk portfolio and the last portfolio is the 

maximum return portfolio. The vertical axis captures the cumulated sum of weights in 

the portfolio. The assets are displayed in the same order for each bar, the highest in the 

bar is always the weight of the WBA assets, then the order continues in accordance 

with the list next to the chart (CVX, WMT, ...) the lowest is always the weight of the 

HON assets. From the graphical comparison of the structure of selected portfolios, it is 

clear that the portfolios obtained by resampling procedures are more significantly 

diversified in comparison with the classical approach. All the more so in the case of 

portfolios with higher expected returns located in the right half of the individual figures. 

Table 20. Quantified average statistics of selected representative portfolios for each investment 

horizons and tested model. 

  

One-year investment 

horizon 

Three-year investment 

horizon 

Six-year investment   

horizon 

Model 

Expected 

return Mean MAD 

Sharpe_

Ratio  Mean MAD 

Sharpe

_Ratio  Mean MAD 

Sharpe

_Ratio  

„Classical“ 0,069% 0,001% 0,839% 0,0007 0,073% 0,431% 0,1693 0,044% 0,572% 0,0776 

„Classical“ 0,083% 0,002% 0,815% 0,0028 0,077% 0,410% 0,1880 0,037% 0,544% 0,0689 

„Classical“ 0,118% 0,013% 0,884% 0,0150 0,090% 0,401% 0,2256 0,047% 0,661% 0,0716 

„Classical“ 0,127% 0,032% 0,906% 0,0355 0,099% 0,417% 0,2364 0,068% 0,670% 0,1021 

Norm_mult 0,069% 0,003% 0,823% 0,0036 0,095% 0,356% 0,2668 0,072% 0,462% 0,1553 

Norm_mult 0,083% 0,004% 0,813% 0,0049 0,096% 0,370% 0,2583 0,071% 0,454% 0,1557 

Norm_mult 0,118% 0,027% 0,863% 0,0318 0,094% 0,382% 0,2460 0,082% 0,658% 0,1253 

Norm_mult 0,127% 0,027% 0,924% 0,0295 0,087% 0,449% 0,1945 0,098% 0,696% 0,1404 

Gld_mult 0,069% 0,006% 0,790% 0,0072 0,087% 0,356% 0,2448 0,072% 0,448% 0,1598 

Gld_mult 0,083% 0,010% 0,788% 0,0121 0,091% 0,365% 0,2496 0,072% 0,455% 0,1578 

Gld_mult 0,118% 0,026% 0,867% 0,0305 0,098% 0,382% 0,2557 0,083% 0,611% 0,1363 

Gld_mult 0,127% 0,023% 0,918% 0,0247 0,094% 0,458% 0,2058 0,099% 0,665% 0,1486 

 

Table 1 shows the quantified average statistics of individual selected portfolios with the 

same expected return for individual investment horizons. Portfolios with the same 

expected return for each model are highlighted in the same color. The best values in 
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terms of portfolios with the same expected return in individual investment horizons are 

highlighted. The data show that portfolios quantified using the resampling procedure 

achieve better results on average. Only in the case of portfolios with the highest 

expected return does the "classical" approach achieve better value in the first two 

investment horizons. Portfolios quantified using the resampling procedure and the GLD 

distribution are, on average, characterized by lower risk, which may favor such 

portfolios in the case of longer-term investments. 

4 Conclusion 

The paper deals with the application of the resampling procedure within the process of 

portfolio selection in the space of expected return and CVaR using the generation of 

data from a multivariate random variable. The paper contributes to empirical research 

by analyzing this procedure on daily data using CVaR model of portfolio selection, 

which have not been the subject of many contributions so far. The paper also describes 

a procedure using the generation of data from a multivariate GLD distribution, with 

most of the empirical research to date dealing mainly with multivariate normal 

distribution. In this paper we deal with the application of two modifications of such a 

procedure using a multivariate normal distribution and a multivariate generalized 

lambda distribution. The performed computational experiments show that the portfolios 

generated by the resampling procedure are more significantly diversified compared to 

the "classical" approach. A comparison of the performance of individual portfolios 

within individual investment horizons shows that, on average, portfolios quantified by 

the resampling procedure achieve better values compared to the “classical” approach. 

Portfolios quantified using the GLD distribution have, on average, a lower level of risk. 

Drawing stronger conclusions will require a more extensive analysis, on the other hand, 

the obtained results stimulate our interest in further future research in this area. 
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