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Abstract. The consumer surplus line integral is a concept which has helped shed 

some light upon the consumer’s welfare changes due to changes in product prices 

and/or changes in the consumer’s income. The main objective of this article is to 

derive the consumer surplus line integral making use of the divergence theorem 

as well as Green’s theorem. This approach enables the interested reader to come 

up with other line integrals with the same value. To our knowledge, this is one of 

the very first direct applications of the two theorems in economics. A partial 

objective is to summarize the fundamental ideas, definitions and theorems from 

a branch of vector calculus dealing with curves and line integrals. Therefore, the 

target audience of the article consists of not only economists studying the 

consumer’s surplus, but also of quantitative-minded economists seeking for new 

research methods. 
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1 Introduction 

Vector calculus plays an important role in natural sciences, namely in physics. Some of 

the most fundamental laws of nature, such as those of electromagnetism described by 

Maxwell’s equations, are formulated making use of the notions like the gradient, 

divergence, curl and the Laplacian or the line, surface and volume integral as well as 

theorems such as the divergence theorem, Green’s and Stokes’ theorem. Yet its direct 

use in economics is somewhat meager. This comes as a surprise since most branches of 

mathematical analysis alone, including fractional, stochastic and time-scale calculus, 

or ordinary and partial differential equations, have successfully been employed in 

economics. An even better reason why one could expect the use of vector calculus in 

economics is the fact that vectors and matrices show up quite often in economic models. 

For instance, the Leontief input-output analysis could benefit from a direct application 

of vector calculus.  
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Notwithstanding the above, there is one line of economic research which utilizes 

some of the aforementioned techniques to analyze changes in the consumer’s surplus 

and his/her utility. The study was pioneered by [6]. A line integral is derived which can 

be used (under certain assumptions) to calculate the change in the consumer’s surplus 

should a price (or a set of prices for multiple products) change. Even though the integral 

is derived in a straightforward manner, it can also be obtained by an application of 

Green’s theorem, which also provides a wider range of admissible integrands for the 

line integral. 

Therefore, the objective of this article is to derive the consumer surplus integral 

making use of Green’s theorem, which would be one of the very first direct applications 

of the theorem in economics. A partial objective is to summarize the main ideas, 

definitions, and theorems of a part of vector calculus analyzing curves and line 

integrals. The target audience of the article consists of economists working with the 

consumer surplus integral as well as quantitative-minded economists seeking for new 

methods. In Section 2 we provide the reader with the review of pertinent literature. 

Section 3 provides some of the fundamental definitions, theorems and ideas of vector 

calculus. In Section 4, the consumer surplus integral is derived, and the results are 

discussed in Section 5. 

2 Literature Review 

As has already been mentioned, the concept of the consumer’s surplus can be traced 

back to [6]. The concept alongside with the “Marshallian triangles” was later 

popularized by [9]. A major pertinent contribution was made by [7] and his notion of 

compensating variations. Some of the very first formulations of the consumer line 

integral can be found in [8] and [12].  

Since the discussed integral is of a vector field (or in other words, it is orientable and 

can, therefore, depend upon the integration path), it is important to study the 

assumptions under which it is path independent. This is in part done in [14]. A concise 

treatment of the issue can be found in [3]. The authors make a summary of the 

fundamental theory of path independence for line integrals. Some of the other 

properties of the consumer surplus line integral are studied in [4]. 

The consumer surplus line integral has found numerous applications in the discrete 

choice theory. For instance, [10] introduces the concept of random compensating 

variation and proves its equivalence with a line integral. The results of the paper are 

analyzed and applied even more, for instance in [5]. 

3 Curves, Line Integrals and Green’s Theorem 

In this section, we provide an overview of the basic concepts of vector calculus. A 

rigorous mathematical treatment thereof can be found in [1], [2] and [11]. A less 

rigorous approach is taken in [13]. 
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Definition 1. Let 𝑛 ∈ ℕ, 𝑛 > 1 and 𝜙: ℝ ⊃ [𝑎, 𝑏] ⟶ ℝ𝑛 , 𝑡 ⟼ 𝜙(𝑡) =

(𝜙1(𝑡), … , 𝜙𝑛(𝑡)), 𝜙 ∈ 𝐶([𝑎, 𝑏], ℝ𝑛). Then the set 𝒦 ≔ 𝜙([𝑎, 𝑏]) = {𝑥 ∈ ℝ𝑛: ∃𝑡 ∈

[𝑎, 𝑏] ∶  𝑥 = 𝜙(𝑡)} is called a curve in ℝ𝑛, the function 𝜙 its parametrization and 𝑡 a 

parameter. 

 

In simple terms, a curve is a continuous image of a compact interval. An economic 

example of a curve is a price-consumption curve, which can be parametrized with the 

price of a given good. 

An exotic example of a curve is the Hilbert space-filling curve. Owing to this 

example, some more properties need to be studied before we delve into line integrals. 

 

Definition 2.  𝒦 is called a regular curve if 𝜙 ∈ 𝐶1([𝑎, 𝑏], ℝ𝑛) and its derivative never 

vanishes. 

 

This definition simply states that a regular curve is a smooth curve without spikes (if 

the curve described the position of a fly in time, this would imply that the fly cannot 

change the flight direction discontinuously).  

 

Definition 3. 𝒦 is called a Jordan curve if at least one of its parametrizations 𝜙 is 

bijective. Moreover, 𝒦 is called a closed Jordan curve if 𝜙(𝑎) = 𝜙(𝑎) and 𝜙 restricted 

to (𝑎, 𝑏) is bijective. 

 

A Jordan curve is such a curve which does not cross itself. From here on, we require 

that every curve we analyze be a piecewise regular (meaning it can be partitioned into 

regular curves) Jordan curve or a piecewise regular closed Jordan curve. 

 

Theorem 4. If 𝜙 ∈ 𝐶1([𝑎, 𝑏], ℝ𝑛) is a Jordan parametrization of a Jordan curve 𝒦. 
Then the length of the curve can be computed as follows:  

ℒ(𝒦) = ∫‖𝜙′(𝑡)‖

𝑏

𝑎

𝑑𝑡 (1) 

Sketch of the proof.  We can approximate the length of the curve by summing up 
lengths of line segments connecting points on the curve:  

ℒ(𝒦) ≈ ∑‖𝜙(𝑡𝑖) − 𝜙(𝑡𝑖−1)‖

𝑛

𝑖=1

(2) 

Since 𝜙 is assumed continuously differentiable, we can apply the mean value 
theorem to obtain: 
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ℒ(𝒦) ≈ ∑‖𝜙′(𝑐𝑖)‖

𝑛

𝑖=1

∆𝑡𝑖 , 𝑐𝑖 ∈ (𝑡𝑖−1, 𝑡𝑖) (3) 

Taking the limit, we get the desired result. 

■ 

 
It ought to be noted here that we have just sketched an informal proof of a weaker 
theorem than Theorem 4 which states how to compute the length of a 
parametrization, not the curve. As it turns out, however, the length of a Jordan 
curve is independent of its Jordan parametrization. 

The following concept of a function of the curve length (also referred to as arc 

length) is of great importance when studying line integrals. 

 

Definition 5.  Let 𝜙 ∈ 𝐶1([𝑎, 𝑏], ℝ𝑛) be a Jordan parametrization of a Jordan curve 𝒦. 

Then we define a function 𝑠: [𝑎, 𝑏] ⟶ ℝ, 𝑡 ↦ ∫ ‖𝜙′(𝜏)‖
𝑡

𝑎
𝑑𝜏. 

 

For every admissible 𝑡, the function 𝑠(𝑡) measures the length of the Jordan curve 𝒦 up 

to 𝑡. Since the integrand is a continuous function, we can find the differential of 𝑠 in 

the form: 𝑑𝑠 = 𝑠′(𝑡)𝑑𝑡 = ‖𝜙′(𝑡)‖𝑑𝑡. Also note that if 𝒦 is of finite length on a 

bounded interval, then 𝑠 is of bounded variation on the interval. We are now ready to 

define the line integral of scalar as well as vector-valued functions. 

 

Definition 6. (Line integral of a scalar function1) Let 𝒦 = 𝜙([𝑎, 𝑏]) ⊂ ℝ𝑛 be a 

Jordan curve of finite length with its regular Jordan parametrization 𝜙. Let 𝑓: ℝ𝑛 ⊇
𝐷(𝑓) ⟶ ℝ such that 𝒦 ⊂ 𝐷(𝑓). Then a line integral of the scalar function 𝑓 along the 

curve 𝒦 is defined as follows: 

∫ 𝑓(𝑥)𝑑𝑠 ≔ ∫ 𝑓(𝜙(𝑡))

𝑏

𝑎

 

𝒦

𝑠′(𝑡)𝑑𝑡 = ∫ 𝑓(𝜙(𝑡))‖𝜙′(𝑡)‖𝑑𝑡

𝑏

𝑎

(4) 

If 𝒦 is closed, the following notation is sometimes used: 

∮ 𝑓(𝑥)𝑑𝑠

 

𝒦

(5) 

 

As can be seen, the line integral is defined as a Riemann-Stieltjes integral with respect 

to 𝑠 (which in this case is of bounded variation, as already noted). Geometrically, it 

                                                           
1 Sometimes referred to as a line integral of the first kind. 
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measures the area between a curve 𝒦 and the graph of a function 𝑓 defined along the 

curve. 

 

Definition 7. (Line integral of a vector-valued function2) Let 𝒦 = 𝜙([𝑎, 𝑏]) ⊂ ℝ𝑛 

be a Jordan curve of finite length with its regular Jordan parametrization 𝜙. Let 𝐹: ℝ𝑛 ⊇

𝐷(𝐹) ⟶ ℝ𝑛, 𝑥 ⟼ 𝐹(𝑥) = (𝑓1(𝑥), … , 𝑓𝑛(𝑥))  such that 𝒦 ⊂ 𝐷(𝐹). Then a line 

integral of the vector-valued function 𝐹 along the curve 𝒦 with its parametrization  
𝜙 is defined as follows: 

∫ 𝐹(𝑥)

 

𝜙

∙ 𝑑𝑥 = ∫ 𝐹(𝜙(𝑡)) ∙ 𝜙′(𝑡)𝑑𝑡

𝑏

𝑎

= ∑ ∫ 𝑓𝑖(𝜙(𝑡))

𝑏

𝑎

𝑛

𝑖=1

𝜙′
𝑖
(𝑡)𝑑𝑡 = ∫ ∑ 𝑓𝑖(𝑥)𝑑𝑥𝑖

𝑛

𝑖=1

 

𝜙

(6) 

 

If 𝒦 is closed, the following notation is sometimes used: 

∮ 𝐹(𝑥) ∙ 𝑑𝑥

 

𝜙

(7) 

The notation indicates that this line integral is in general not independent of the 

parametrization (it can be shown that it gives the same result for equivalent regular 

Jordan parametrizations, but different orientations impact the sign). Later in the next, 

however, we write  ∫ 𝐹(𝑥)
 

𝒦
∙ 𝑑𝑥 when the orientation is given. 

As the following sequence of steps indicates, there is a relation between the line 

integrals of the first and the second kind: 

∫ 𝐹(𝑥)

 

𝜙

∙ 𝑑𝑥 = ∑ ∫ 𝑓𝑖(𝜙(𝑡))

𝑏

𝑎

𝑛

𝑖=1

𝜙′
𝑖
(𝑡)𝑑𝑡 = ∫ (∑ 𝑓𝑖(𝜙(𝑡))

𝜙′
𝑖
(𝑡)

‖𝜙′(𝑡)‖

𝑛

𝑖=1

) ‖𝜙′(𝑡)‖𝑑𝑡 =

𝑏

𝑎

= ∫ 𝐹(𝑥)

 

𝒦

∙
𝜙′(𝑡)

‖𝜙′(𝑡)‖
𝑑𝑠 (8)

 

At the very end of this section, let us formulate two important results of vector analysis, 

namely the divergence theorem and its consequence Green’s theorem, which will be 

used in the next section. 

 

Theorem 8. (The divergence theorem in ℝ𝟐) Let 𝐵 ⊂ ℝ2 be a compact set with a 

piecewise smooth boundary 𝜕𝐵. Let 𝐹(𝑥, 𝑦) = (𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦)) such that 𝑓𝑖 ∈

𝐶1(𝐵, ℝ), 𝑖 = 1, 2. Then 

                                                           
2 Sometimes referred to as a line integral of the second kind. 
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∬ ∇ ∙ 𝐹 𝑑𝑥𝑑𝑦 =

 

𝐵

∮ 𝐹 ∙ 𝜐 𝑑𝑠

 

𝜕𝐵

(9) 

where 𝜐 is the outward unit normal vector (the path is oriented anticlockwise) and 

 ∇ ∙ 𝐹 ≔
𝜕𝑓1

𝜕𝑥
+

𝜕𝑓2

𝜕𝑦
 is the divergence of a vector-valued function. 

 

Theorem 9. (Green’s theorem) Let 𝐵 ⊂ ℝ2 and 𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦) have the same 

properties as in the previous theorem. Then for any anticlockwise-oriented 

parametrization 𝜙 of 𝜕𝐵  

∬ (
𝜕𝑓2

𝜕𝑥
−

𝜕𝑓1

𝜕𝑦
)

 

𝐵

𝑑𝑥𝑑𝑦 = ∮ 𝑓1

 

 𝜙

𝑑𝑥 + 𝑓2𝑑𝑦 (10) 

4 Derivation of the Consumer Surplus Integral 

In this section, we derive the consumer surplus line integral making use of Green’s 

theorem. Let us consider a continuously differentiable demand function 𝑓: ℝ+ ⟶
ℝ+, 𝑝 ⟼ 𝑓(𝑝) = 𝑞. Let there be an increase in the price from 𝑝1 to 𝑝2. The problem is 

to calculate the change in the consumer’s surplus denoted by 𝑇. It is quite evident that 

the change is the shaded area in Figure 1.  

 
Figure 1 The Consumer Surplus Line Integral 

Source: Own illustration 
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It can immediately be noticed that the area can be calculated as the following integral: 

𝑇 = − ∫ 𝑓(𝑝)

𝑝2

𝑝1

𝑑𝑝 (11) 

This integral could be thought of as a line integral along the price-consumption curve, 

which could be parametrized with the price. The change in the consumer’s surplus can 

also be calculated as the following double integral: 

𝑇 = − ∬ 1𝑑𝑞𝑑𝑝

 

𝐵

(12) 

where 𝐵 = {(𝑞, 𝑝) ∈ ℝ2: 𝑝1 ≤ 𝑝 ≤ 𝑝2  ∧ 0 ≤ 𝑞 ≤ 𝑓(𝑝)}. Making use of Fubini’s 

theorem, we can rewrite the double integral as an iterated integral: 

𝑇 = − ∫ ( ∫ 1𝑑𝑞

𝑓(𝑝)

0

)

𝑝2

𝑝1

𝑑𝑝 (13) 

Evaluating the inner integral would yield Equation (11). Observe that the set 𝐵 with its 

boundary 𝜕𝐵 satisfies the assumptions of Green’s theorem. Therefore, we can look for 

a continuously differentiable vector-valued function 𝐹(𝑞, 𝑝) = (𝑓1(𝑞, 𝑝), 𝑓2(𝑞, 𝑝)) 

such that 
𝜕𝑓2

𝜕𝑞
−

𝜕𝑓1

𝜕𝑝
= 1. One of the first candidates which come up is the following 

vector-valued function: 𝐹 = (0, 𝑞). According to Green’s theorem, we obtain: 

𝑇 = − ∬ 1𝑑𝑞𝑑𝑝

 

𝐵

= − ∮ 0𝑑𝑞 + 𝑞𝑑𝑝

 

𝜕𝐵

(14) 

As can be seen in Figure 1, the boundary can be split into four parts in the following 

manner: 

𝜕𝐵 = ⋃ 𝜕𝐵𝑖

4

𝑖=1

(15) 

These sets are pairwise disjoint except for a finite number of points. Therefore, thanks 

to the additivity of the line integral, we can write: 

− ∮ 0𝑑𝑞 + 𝑞𝑑𝑝

 

𝜕𝐵

= − ∑ ∫ 𝑞𝑑𝑝

 

𝜕𝐵𝑖

4

𝑖=1

(16) 
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Let us notice that the only potentially non-zero integral of all four integrals is along 

𝜕𝐵1. Along 𝜕𝐵3, 𝑞 is identically zero, so the whole integral is zero. Along 𝜕𝐵2 as well 

as 𝜕𝐵4, 𝑞 is no longer zero, but the price does not change along these lines, therefore, 

𝑑𝑝 = 0. We can parametrize 𝜕𝐵1 quite naturally since it is a graph of a function. We 

let 𝑝 = 𝑝 ∈ [𝑝1, 𝑝2] and 𝑞 = 𝑓(𝑝). The differentials are as follows: 𝑑𝑝 = 𝑑𝑝 and 𝑑𝑞 =
𝑓′(𝑝)𝑑𝑝. Hence, we get the desired result: 

𝑇 = − ∫ 𝑓(𝑝)𝑑𝑝

𝑝2

𝑝1

(17) 

This integral is then extended in the literature for the case when multiple prices change. 

Under certain assumptions, the resulting line integral does not depend upon the 

integration path and can therefore be evaluated as a line integral along line segments. 

These assumptions are quite restrictive (see [14]) or [3]). 

Using our approach which relies upon Green’s theorem, we could derive other line 

integrals the value of which is equal to that of the integral given by Equation (17) just 

by selecting a suitable vector-valued function and/or a different anticlockwise regular 

Jordan parametrization. 

One could also use the divergence theorem to derive the integral (which should not 

come as a surprise since Green’s theorem is its consequence). In that case, one might 

consider 𝐹 = (𝑞, 0). The outer unit normal vectors for 𝜕𝐵2, 𝜕𝐵3 and 𝜕𝐵4 are (0 1), 

(−1 0) and (0 −1), respectively. Therefore, the only potentially non-zero integral 

is once again the one along 𝜕𝐵1. The outward unit normal vector there (considering the 

same parametrization used in Green’s theorem) is equal to 
1

√(𝑑𝑝)2+(𝑓′(𝑝)𝑑𝑝)2
(𝑑𝑝 −𝑓′(𝑝)𝑑𝑝) and 𝑑𝑠 = √(𝑑𝑝)2 + (𝑓′(𝑝)𝑑𝑝)2, so in the end we 

get the same integral. 

 

5 Conclusion 

In this article we have derived the consumer surplus line integral making use of Green’s 

theorem as well as the divergence theorem. This approach enables readers to come up 

with numerous line integrals with the same value by selecting a suitable vector-valued 

function and a parametrization. 

As far as we know, this is one of the very first direct applications of the two theorems 

from vector calculus in economics. In our opinion, vector analysis has the potential to 

be successfully employed in economics just like it has been employed in physics for 

nearly two centuries. Vector-valued functions, albeit rarely used in economics, can 

describe many real-world economic processes. One might consider, for instance, a 

vector-valued function the inputs of which are factors of production, and the output is 

a vector with elements equal to the production of industries in the economy. One step 

further from this example is the reformulation of the Leontief input-output model. The 
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curves in this setting could be curves joining points in the production space 

corresponding to different prices of the factors of production.  

Another possible area of research where vector calculus might prove beneficial is 

regional economics. Vector-valued functions in this case could assign to each point in 

space (which might represent a country, a city, or even more abstract structures) a 

vector of pertinent economic indicators. 

There are more examples as to how vector calculus could help economists study and 

tackle real-world economic phenomena. However, delving into more detail is way 

beyond the scope of this contribution (or any single article). 
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